
A Study into Different Caching Strategies for Value Reuse

Optimization

Alex Chen, Sahil Farishta, Ingab Kang, Joshua Segal

December 16, 2020

1 Abstract

Programs often redundantly execute the same func-
tions with the same inputs in a deterministic fashion
which wastes resources to recompute previously com-
puted values. To solve this, programmers explicitly
create caches for functions to avoid redundant com-
putation. This technique is most popular in dynamic
programming, but these problems are usually rela-
tively small compared to the entire program. Caching
becomes increasingly difficult to code and maintain as
the code base scales in size. In this paper, we explore
the performance effects of function value reuse. We
automate the function caching functionality by writ-
ing a compiler optimization pass in LLVM combined
with an external C++ caching library we created.
Using LLVM, we perform a careful analysis of each
function to make sure it is suitable for caching before
running our optimization on it. We also investigate
and implement two different caching algorithms: an
LRU vector based cache and an LRU hashmap based
cache. Both show significant improvement over the
unoptimized versions, especially when computing re-
cursive or repeated calls to math library functions.
In our most significant benchmark, our optimizations
show 10,000 times speed up over the unoptimized
code.

2 Introduction

Most value reuse compiler optimizations today use
compile time data flow analysis to do constant fold-
ing, global constant propagation, common sub ex-
pression elimination, etc. However, all of these op-
timizations are based on control flow graphs and
not run time values. This means that there are still
many redundant computations that get overlooked
by the current compiler optimization passes. We ex-
plore different techniques to optimize code using run
time optimizations by inserting small pieces of code
throughout the program.

Additionally, most research has stayed away from
trying to eliminate common function calls altogether
because it is difficult to analyze the function’s side
effects. Side effects can include I/O functions, exter-
nal device calls, reading or writing global variables,
etc. In order to make a generalized compiler pass,
we have to be conservative with what we cache. By
only caching function values for functions that we
know are cacheable, we can create a robust compiler
optimization pass.

Caching function values is a common programming
paradigm that many programmers use to significantly
reduce the number of function calls. Caching recur-
sive functions where function calls build off of each
other is known as dynamic programming. This pro-
gramming paradigm is used frequently to improve
the performance of recursive functions. However,
creating and maintaining a useful cache for an entire
program becomes very difficult. This paper explores
ways to automate this process to bring the massive
performance benefits of caching to a program.

In this paper, we examine the significance of value
reuse with functions using two methods. The first
method uses a vector based LRU and the second
method uses a hashmap based LRU method.

Having a compiler pass that can automate the cre-
ation and maintenance of a cache is usually more
desirable than having programmers reprogram large
parts of legacy code. Our research can significantly
help improve this part of programming, so that legacy
code can be optimized with little effort and the bur-
den to create good program wide caches are lifted off
of programmers.

1

3 Background

Here we discuss the various concepts that our solu-
tion uses. We look specifically at value reuse opti-
mizations that can be performed using a cache based
on the technique proposed by K. V. Seshu Kumar [1].
Additionally, we look at LLVM as a tool to create a
compiler pass which will allow us to insert the code
for our optimization at compile time.

3.1 Value Reuse Optimization

Value reuse refers to the elimination of redundant
function calls [1]. A function call is redundant if it is
a call to a pure function that has been called before
with the same inputs. For a function to be pure, it
must meet the following two requirements:

1. The function must return the same value each
time it is called with the same input arguments.

2. The function must not have any effects outside
of its stack space, including but not limited to
using global variables and performing I/O op-
erations.

If a function is pure, values that it returns can be
stored in a cache that maps input arguments to re-
turn values as the program runs. On redundant calls
to that function, the return value can be retrieved
from the cache instead of computed again by execut-
ing the function.

Listing 1: Example of code that can be optimized by
value reuse

1 int g = 5 ;
2
3 int addG(int a)
4 {
5 return a + g ;
6 }
7
8 int main ()
9 {

10 int a = 42 ;
11 . . .
12 int w = s q r t (a) ;
13 int x = s q r t (a) ;
14
15 a = 52 ;
16 . . .
17 int y = s q r t (a) ;
18 int z = addG(a) ;
19 p r i n t f (”Can ’ t cache t h i s ! ”) ;
20 }

Consider the C++ code in Listing 1. The call to sqrt
on line 13 is redundant because sqrt is a pure func-
tion, so it is guaranteed to return the same value as
the call to sqrt on line 12. If the value on line 12 was
cached, then line 13 can simply retrieve that value
instead of calling sqrt again. However, the call to
sqrt on line 17 is not redundant because it has never
been called with the same input before. Additionally,
the call to addG on line 18 cannot be cached because
addG uses the global variable g and the call to printf
on line 19 cannot be cached because it performs an
I/O operation.

3.2 LLVM

LLVM is an open source compiler for C and C++
programs [2]. It allows users to write passes that
perform custom optimizations.

The key part of LLVM that is used in our imple-
mentation is the ModulePass, which gives access to
all of the functions, basic blocks, and instructions
in a program. By overloading this pass, we are able
to determine which functions we can create caches
for and insert instructions to instrument the caching
logic as described later in Section 5.

4 Motivation

Value reuse optimization can have significant bene-
fits for programs that have large numbers of calls to
pure functions with the same input. For example,
consider the code in Listing 2. Without value reuse
optimization, this code would call the sqrt function
1000 times. However, with value reuse optimization,
sqrt would only be called twice (once each for input
arguments 10 and 20) and all subsequent calls would
retrieve those values from cache. Since the sqrt func-
tion has O(

√
n) complexity and cache retrieval can

have as low as O(1) complexity, this would result in
significant time savings. These savings only grow as
the complexity of the function increases.

Listing 2: Example of code that benefits significantly
from value reuse optimization

1 // Array wi th pa t t e rned data
2 int a [1 0 0 0] = {10 , 20 , 20 , 20 , 10 ,
3 10 , 20 , 10 , . . . }
4
5 for (int i = 0 ; i < 1000 ; i++)
6 {
7 b [i] = s q r t (a [i]) ;
8 }

2

The same effect can be achieved with dynamic pro-
gramming, but then it must be deliberately imple-
mented by the programmer and only covers the func-
tions that the programmer implements it for. How-
ever, a compiler could automatically insert code to
perform value reuse on all pure functions in a pro-
gram without any extra work done by the program-
mer. Thus, a compiler implementation of value reuse
optimization is desirable.

5 Implementation

Our implementation of value reuse optimization is
divided into two parts: an LLVM pass and a Func-
tion Cache Manager (FCM) written in C++. The
LLVM pass runs through the target code and re-
places any calls to a cacheable function with a func-
tion call to the FCM. The FCM manages the cache for
each function, calling the function when there is no
value cached for the arguments passed in, and evict-
ing when the cache is full.

5.1 LLVM pass

The LLVM pass searches through the IR to find calls
to cacheable functions and replaces them with a call
to the FCM. To determine whether or not a function
can be cached, the pass checks that each function
meets two criteria: it must not use global variables,
and it must not have any I/O operations such as
printing or writing to a file.

The LLVM pass does this by iterating over each
function in the module that is user defined. This
is implemented by checking the namespace that the
function belongs to, which prevents our code from
optimizing calls to standard library functions. Opti-
mizing these functions may lead to faster speed ups,
but would require further checks to ensure that they
are optimizable. The pass checks if each user defined
function references global memory or performs an
I/O operation in any of its instructions. If a function
does either of these, then it is declared uncacheable.
If a function calls another function, the pass checks to
see if that function is cacheable or not, and if it isn’t,
then the caller function is declared uncacheable as
well. If it hasn’t been determined whether the called
function is cacheable yet, the pass is run on that
function before proceeding. Recursive function calls
are ignored in this analysis, since if a function calls
itself and is otherwise cacheable, then it is cacheable.
If a function is found to be uncacheable, it is added
to the set of uncacheable functions. Otherwise, it is
added to the set of cacheable functions.

The pass then iterates through the calls to the set
of cacheable functions. Each call is substituted with
a call to the Function Cache Manager’s (FCM) get-
CachedValue method. The FCM getCachedValue
method takes in a function pointer to the function
being cached, along with the original parameters.
The return value of getCachedValue is then substi-
tuted everywhere the value from the original function
call is used. The remainder of the work is completed
by the FCM.

5.2 Function Cache Manager

The FCM code is written in C++ and is designed to
manage the cache for each function. We began by
implementing the method proposed by K.V. Seshu
Kumar [1]. We then improved on the design by opti-
mizing the cache search and eviction strategies. Each
of our strategies works by creating a hashmap that
maps function pointers to their respective caches.
These caches contain a collection of structs which
marks the arguments passed in and the correspond-
ing return value. The FCM’s main function is called
getCachedValue, which is called directly from the
program after the LLVM pass has been run. It takes
the function pointer for the cached function and
its parameters as arguments. The FCM then loads
the corresponding cache collection for the function
passed in, creating an empty cache for the function
if this is the first time the function has been called.
If the arguments passed in are in the cache, then
the FCM simply returns the cached value. If the
arguments passed in are not in the cache, then the
FCM calls the cacheable function using the function
pointer and arguments passed in. The FCM then
adds the returned value to the cache along with the
corresponding arguments, performing eviction if nec-
essary, before returning the calculated value.

Each of our FCM implementations share this logic
with different optimizations. We discuss them in
greater detail below.

5.2.1 K. V. Seshu Kumar Baseline

The implementation described in Kumar’s paper [1]
was used as a baseline. It uses a vector to store the
cached values and uses a round robin eviction strat-
egy where each cache index is successively replaced.
In his paper, Kumar simply performed the caching
by hand; here we perform the caching dynamically
using our LLVM pass. Kumar was able to decrease
the number of function calls by up to 99% on various
test cases with this method.

3

5.2.2 Least Recently Used Eviction

We use a Least Recently Used (LRU) eviction strat-
egy to improve the performance of the implementa-
tion discussed in [1]. This approach adds an LRU bit
to the cached element struct. The FCM keeps track
of an LRU decrementer which starts off as the max-
imum value for an integer. Whenever an element is
accessed or added to the cache, the LRU bit for that
cache element is set to the value of the decrementer
and then the decremeneter is decreased. When evict-
ing, the cache element with the highest LRU value is
replaced. We also perform a heuristic which begins
searching the cache vector from the Most Recently
Used element.

5.2.3 Least Recently Used with Hashing

We also implement an LRU eviction strategy that
uses a hashmap to store the cached structs instead
of a vector. This allows for faster lookup, insertion,
and replacement times while adding memory over-
head compared to our LRU implementation above.
Additionally, there is added time overhead involved
in creating the hashmaps and updating the size of
each hashmap for each function.

6 Evaluation

6.1 Test Cases

We evaluate each of our implementations of value
reuse optimization on the test cases shown in Table
1. The test cases can be divided into three different
groups: Caching Advantageous, Caching Adversarial,
and Not Cached. In all of our test cases, the func-
tion receives two integers as inputs and outputs an
integer.

Group Test Name

Caching Advantageous

Finonacci
Iterative Fibonacci ST
Iterative Factorial ST
Pseudorandom Pow ST
Towers of Hanoi
LRU Biased

Caching Adversarial
Knapsack
Matrix Chain Mult

Not Cached
Global Access
Print Statement

Table 1: Test Cases

6.1.1 Caching Advantageous

The test cases belonging to this group are dynamic
programs that benefit from caching function calls.
The speedup that these tests show is best seen by
analyzing the Fibonacci program. In a typical Fi-
bonacci program, the n-th function calls on the (n-
1)th and (n-2)th function, which then in turn calls
on the (n-2)th, (n-3)th and (n-3)th, (n-4)th func-
tions respectively. Therefore, if we cache the previous
functions, we would be able to eliminate duplicate
function calls.

Iterative Fibonacci Stress Test (ST) iteratively runs
Fibonacci functions with differing n. Iterative Facto-
rial ST computes the factorial of n, where n ranges
from 0 to 1000. Pseudorandom Pow ST recursively
computes the 400th power 40, 1600th power of 160,
6400th power of 640 on every 2nd, 3rd, and other it-
eration respectively. This test was created to demon-
strate a test case where the same value would be
reused, but in a random manner. Towers of Hanoi
is a classic dynamic programming problem that we
modified to accept the height of the tower being
moved and the status of the three towers encoded as
a single integer. Finally, LRU Biased is a test case
that is designed to favor LRU over round-robin cache
management by recursively calling the 0th function
and the i-th function with i incremented on every
iteration.

6.1.2 Caching Adversarial

These are cases where the program is less likely to
call on previously cached inputs, but more likely to
iterate through new inputs. In this case, FCM is not
likely to offer any speedup as it is not likely to get
a cache hit, so it would only incur the overhead of
cache management. Knapsack computes the optimal
selection of objects to store the most weight as pos-
sible within a specified limit. As a new input is used
every iteration to explore a better selection, FCM is
not likely to get cache hits. Matrix Chain Multipli-
cation performs similarly as it computes the optimal
sequence to compute a matrix multiplication and cre-
ates minimal reuse opportunities.

6.1.3 Not Cached

These tests were created to show that our LLVM
pass successfully filters out uncacheable functions.
The Global Access test accesses a global variable and
Print Statement uses printf. Therefore, both cases
should not be replaced with calls to FCM and should
execute the same regardless of the optimization pass
as they are not pure functions.

4

1
10
100

1000
10000

100000
1000000
10000000

Finonacci Iterative
Fibonacci

ST

LRU
Biased

Pseudorandom
pow
ST

Towers
of

Hanoi

Iterative
Factorial

ST

Knapsack Matrix
Chain
Mult

Global
Access

Print
Statement

Advantageous Adversarial Not Cached

N
um

be
r o

f C
yc
le
s (
Lo
g) unoptimized

seshu
lru
lru+map

Figure 1: Experiment results showing the number of cycles at log scale needed to run each test case

6.2 System Configuration

Our tests were all conducted on the eecs583a server.
As a limitation of using the course provided server,
we were not able to monopolize the server for our test,
which could introduce noise in our test results. Also,
we were not given root access, so we were not able to
disable turbo boost and fix the processor frequency,
which could have been sources of noise in our results.

7 Analysis

Figure 1 shows the number of cycles needed to run
each test case. As expected, the optimized code
shows significant speedup on the Caching Advanta-
geous tasks, slowdown on the Caching Adversarial
tasks, and no speedup on the Not Cached tasks.

On the Advantageous tasks, LRU performed the
best with an average of 8731 times speedup against
unoptimized and LRU hashmap came in second with
7293 times speedup on average. The K. V. Seshu
Kumar implementation was significantly slower than
the others, with only 3771 times speedup on average.
On the Adversarial tasks, all optimizations exhib-
ited slowdowns, but Kumar’s implementation per-
formed the worst as LRU and LRU hashmap both
employed searching optimizations, which reduced
cache management overheads. For the Not Cached
tasks, all configurations showed similar number of
cycles (within ±6 cycles of each other). We were also
able to observe the same terminal outputs for Print
Statement, confirming that the LLVM pass did not
optimize for the Not Cached tasks.

Overall, if FCM was used, regardless of whether
it was an Advantageous task or Adversarial task, our
implementation of FCM outperformed Kumar’s with
an average of 2.3 and 1.9 times speedup for LRU
and LRU hashmap respectively. This shows that our
search algorithm and cache management improve-
ments are good enough to manage the function cache
efficiently.

8 Conclusion

In this paper, we demonstrate that it is possible to
implement a caching strategy for value reuse opti-
mizations at the compiler level. Using an LLVM
pass, we can find functions that can be cached and
implement various caching strategies to manage the
caches for these functions to avoid redundant com-
putations wherever possible. We have shown that a
simple strategy which uses LRU as the eviction pol-
icy can improve performance by thousands of times
on certain problems. These optimizations are akin
to the optimizations seen through dynamic program-
ming and require no extra work from an end user.

There is still work to be done in this area, however.
Different caching algorithms may yield better per-
formance on various problems, and not all functions
benefit from this caching. Future work could involve
developing a cost function which analyzes whether or
not it is worth caching a certain function. Addition-
ally, expanding this cost function using data profiling
may allow us to determine the optimal cache eviction
strategy for each individual function independently.
Additionally, future work may perform optimizations
more aggressively than we did, as we avoided func-
tions that perform any sort of global or I/O accesses.
However, these functions still may be cacheable with
careful analysis. Future work may also extend these
optimizations to run on any function, regardless of
the number or type of inputs and outputs.

References

[1] K. Kumar, “Value reuse optimization: Reuse
of evaluated math library function calls through
compiler generated cache,” ACM SIGPLAN No-
tices, vol. 38, 08 2003.

[2] C. Lattner and V. Adve, “Llvm: A compilation
framework for lifelong program analysis & trans-
formation,” in CGO. USA: IEEE Computer So-
ciety, 2004, p. 75.

5

